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a b s t r a c t

Additive Manufacturing, a pillar of Industry 4.0, to enable automatic real-time process control, relies on in- 
situ measurements, some of which - currently under development - exploit surface topography. 
Topographic characterisation requires a large set of parameters, loosely linked to visual appearance upon 
which related in-situ measurements are mostly based. A supervised machine learning classifier of as-built 
surfaces based on topographical characterisation is proposed and applied to tool steel test pieces fabricated 
by electron beam powder bed fusion. The methodology is developed to provide process engineers with the 
visual appearance of the topographical parameters set, and enable multi-scale, information-rich quality 
control.

© 2023 CIRP. 

Introduction

Additive manufacturing (AM) is one of the pillars of Industry 4.0 
[1,2] and will have a core role in the future of the manufacturing 
industry [3]. Provided its capability of producing highly customised 
components both from a geometrical and material composition 
perspective [4], AM allows definitive optimisation of energy and raw 
material consumption, thus being essential in the Green Deal and 
circular economy framework [5–7]. Amongst the several AM tech
niques, powder bed fusion (PBF) processes are the most investigated 
in the literature, exploited in industry, and the ones with greater 
technological readiness [8,9]. Electron beam melting (EBM or EB- 
PBF) is one PBF process massively exploited in industry and aca
demia [10].

In this technique, electrons are generated by a tungsten filament 
or a lanthanum hexaboride cathode and accelerated to 60 keV. Then 
two electromagnetic lenses focus and deflect the beam onto the 
powder bed [11]. The overall process can be divided into three main 
stages: i) pre-heating of the start plate, ii) building of the compo
nent, and iii) cooling helped with He flux. During the melting, the 
process is undertaken in a controlled vacuum (10−4 mbar) thanks to 
a small helium pressure to prevent so-called smoke events. During 
the building of each layer, it is possible to identify four steps: i) 

application of a homogeneous powder layer supplied by two hop
pers located on the side above the building tank and distributed by 
the movement of a stainless steel rake; ii) pre-heating of the powder 
bed, during which the powder particles are slightly sintered in order 
to enhance the electrical conductivity of the powder bed and ensure 
stability to the process; this step allows regulating the building 
temperature, which depends on the processed material; iii) melting 
step, during which the electron beam is focused on the powder bed, 
and the scanning speed is reduced with respect to the pre-heating 
step to melt selected area to create the final component; iv) the last 
step, to compensate the total energy used in the process: in this step, 
the electron beam is used to regulate the temperature of the build 
with the same process parameters as of the pre-heating in order to 
remain at the selected build temperature [11,12].

Process parameters influence parts’ final quality and character
istics. The relative density of the final components mostly depends 
on the melting parameters and on the quality of the powder [12]. 
Amongst the melting parameters, the melting strategy, the beam 
power, which depends on the voltage and the beam current, the 
scanning speed and the line offset of adjacent lines are the most 
relevant. Guo et al. [13] reported that the relative density of Ti-6Al- 
4V specimens produced by EB-PBF is inversely proportional to 
scanning speed and directly proportional to the beam current. Ad
ditionally, they showed a qualitative dependence of the top surface 
on the internal porosity [13]. Wang et al. [14] considered two al
ternative melting strategies, i.e. multi-beam and continuous beam, 
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and their influences on the surface roughness. The main advantages 
of the EB-PBF process on L-PBF lie in the vacuum environment and 
the higher achievable building temperatures. The vacuum environ
ment enables processing material with lower interstitial element 
content [15]. The high building temperature reduces the thermal 
gradient and, consequently lowers the residual stresses in the 
component. In fact, the final residual stresses are generally lower 
than those characteristics of L-PBF process [16]. This allows the 
processing of materials more sensitive to thermal crack formation, 
like poorly weldable alloys, medium to high alloyed steels, and 
strongly precipitation hardened Ni superalloys [15,17–21]. On the 
other hand, the wider Powders Size Distribution (PSD) and the larger 
average size of powders that are used in EB-PBF with respect to 
those used in L-PBF indeed result in poorer surface finish. Currently, 
this is a drawback of the considered manufacturing process that 
users have to accept.

The technological readiness and the flexibility of the EB-PBF 
process make it interesting to design highly customised designs in 
terms of material composition and geometry for industrial applica
tions [8,9]. Nowadays, EB-PBF can process several materials 
[12,15,19], and some automotive and aerospace industrial applica
tions are already available, especially for Ti alloys and TiAl alloys 
[22]. Moreover, the characteristic of EB-PBF opens to the processa
bility of a new range of materials for which the traditional processes 
show severe limitations, e.g. refractory materials [20,21] and high 
entropy alloys (HEAs) [23]. Therefore, it is crucial to employ fast, 
economical, and reliable techniques to accelerate the optimisation of 
the process parameters.

Accordingly, a consistent amount of literature has focused on 
inferring correlations between process parameters and part prop
erties, such as microstructure [24,25], porosity [26], mechanical 
properties [24,27], and surface finish [28]. Consistently, the maturity 
of the process and the need for integration and automation typical of 
the current manufacturing pushed the development of a quality 
control system for PBF processes. These typically rely on multi- 
sensor techniques and exploit the big data availability [9]. Different 
quality control techniques are available, ranging from off-line to in- 
situ characterisation techniques [29]. Off-line controls, e.g. SEM 
microstructure characterisation [30,31], nano-indentation [32–34]
and XCT [35,36], are typically highly informative but not suitable for 
feedback closed-loop process controls as they are off-machine and 
sometimes destructive and expensive. Conversely, in-situ controls 
are in-process and on-machine, enabling quick decision-making and 
process control. These will ultimately enable the complete auto
mation of AM processes and subsequent finishing steps in the years 
to come. In-situ quality controls target quantities that can be mea
sured during the process and directly correlated to part properties. 
The measurements of observable features can be divided into five 
levels, as reported in Table 1 [9].

Surface topography measurements have been introduced re
cently among the several in-situ measurements and monitoring 
methods. Surface topography measurements are Level 1 monitoring 
techniques and represent the most recent technical development of 
optical surface topography measuring instruments. Surface 

topography, i.e. the geometrical feature that interacts with the sur
rounding environment, consists of the component’s shape, texture, 
and surface features [37]. The topographical characterisation is es
sential when designing and optimising processes, materials, and 
components because it controls many properties, thus ultimately 
contributing to the part’s final quality [38]. Properties that can be 
controlled include optical, biological, e.g. adsorption, mechanical, 
e.g. hardness, and tribological properties, e.g. stiction and wear. 
Consequently, surface technologies and careful process parameters 
tuning have been exploited to engineer the topography and control 
the resulting properties and functionality [39,40]. Consistently, ex
tended research can be found correlating process parameters, to
pography, and components’ properties both in conventional and 
AM-PBF processes [28,40–42]. In particular, focusing on EB-PBF, to
pography resulted in being mostly affected by beam speed and 
current, laser offset and focus [9], and part build geometry [43]. Si
milarly, the topography is related to porosity and mechanical prop
erties [41]. In fact, literature both qualitatively and quantitatively 
have highlighted how internal defects, e.g. porosities or irregula
rities, might propagate to outer layers introducing severe topo
graphical irregularities in the top surface, up to warping the overall 
part [44–46]. Therefore, academia and industry have recently been 
developing measuring systems that can achieve in-situ surface to
pography measurements. They can be based on several technologies, 
i.e. fringe projection systems [47,48], focus variation [49], blade 
mounted sensors [50], co-axial coherent imaging [51,52], and elec
tronic imaging [53,54]. The first two are technologies native for 
surface topography measurements with high-end metrological 
characteristics and measurement flexibility [47,55]. The blade- 
mounted sensors measure topography as a secondary result of other 
acquisitions, resulting in a cheaper implementation but with poor 
metrological performance and limited topographical feature mea
surement capabilities, e.g. for elevated edges [9]. The last two exploit 
the processing system to obtain topographical measurements. They 
are peculiar for L-PBF and EB-PBF processes, respectively. However, 
despite the structural and design advantages, they feature a limited 
lateral resolution, only allowing the characterisation of coarser to
pographical features.

State-of-the-art applications of Level 1 in-situ topographical 
measurements are devoted to detecting localised defects, i.e. topo
graphical features, [9,56] and feeding information to the closed-loop 
process control [57]. This is achieved by either exploiting the for
merly discussed topographical measurements [9,56] or relying upon 
2D images [58,59]. It is clear that the former are more informative, 
are traceable, and would allow, at once, quantitative characterisation 
through surface topography parameters [60]. However, despite the 
mentioned advantages and the literature exploiting area field para
meters (Sa, Sq, etc.) [60] to qualify and optimise the manufacturing 
process, these are rarely adopted for in-line quality control. Con
versely, literature presents quality controls based on small scale 
topographical characterisation, i.e. feature-based characterisation 
[9,56,61]. The reasons for this are manifold. AM topographies require 
complex characterisation that must include both conventional tex
ture and advanced feature characterisation [43,62]. It results in a 

Table 1 
In-situ measurements techniques for on-line quality control of PBF processes. 

Level Process signature Characteristics

0 Environmental characteristics of AM system (chamber pressure, temperature, oxygen 
content, inert gas flow, etc.)

AM-machine embedded sensors; high-frequency acquisition, raw 
signals.

1 Powder bed homogeneity, geometrical characteristics, and topography of the layer. Additional sensors, measuring at least once per layer the build area or a 
region of interest.

2 Scan track, interaction between powder and beam, spatial thermal field history, local 
defects (spatters, plume emissions).

Additional sensors, high frequency, and high spatial resolution.

3 Melt pool characteristics (stability, shape, size, physical and thermodynamic state). Additional sensors, high frequency and highest spatial resolution.
4 Under the layer measurements (melt pool depth, sub-surface defects, etc.) Additional sensors (ad-hoc prototypes).
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large set of parameters to be evaluated and managed. Moreover, the 
interpretation of this set is often challenging and not straightfor
ward. In fact, although the meaning of each parameter is clear, the 
indication of the geometrical resemblance of the topography by the 
set can be elusive for not highly experienced practitioners in topo
graphical characterisation. Conversely, visual information can be 
utmost useful for process designers. Literature has formerly at
tempted a classification of the most frequent geometrical resem
blance of as-built EB-PBF topographies. They typically include, for 
non-optimised processes, the distributed presence of topographical 
features, i.e. globules and surface pores, or an orange peel aspect; for 
optimised processes, the possible presence of isolated topographical 
features or a clean topography [13,44,45,62,63]. Literature performs 
topographical classification and discusses correlation with other 
defects based on visual qualitative aspects [13,63]. However, the 
literature does not address the relationship with surface parameters 
used for geometrical dimensioning and tolerancing (GD&T) specifi
cation.

This work develops a tool based on a supervised machine 
learning (ML) algorithm to classify EB-PBF as-built topographies 
based on state-of-the-art topographical quantitative characterisa
tion. The resulting classification aims to provide a visual indication 
of the meaning of the set of topographical characterisation para
meters to aid process engineers and quality practitioners in the 
design. Moreover, when coupled with quantitative characterisation, 
these visual indications will allow multi-scale, information-rich 
quality control [64,65], which is essential on the route towards an 
integrated multi-sensor automated control system for AM. In fact, 
recalling the mentioned correlation between process parameters, 
component properties, and the surface topography, an integrated 
and automated control system could be conceived to trigger process 
parameter modification to optimise the part build, the interruption 
of the manufacturing process if the part would result defective, and 
the selective execution of some post-processing to optimise costs. 
The rest of the paper is structured as follows. Section 2 discusses the 
considered materials and methods and presents the state-of-the-art 
as-built EB-PBF surface topography characterisation and classifica
tion. Section 2 also presents the methodology to build the proposed 
supervised ML algorithm to classify the topographies. The metho
dology is applied to the case study of industrial relevance (i.e. an H13 
by EB-PBF, formerly introduced); relevant results are presented and 
discussed in Section 3. Finally, Section 4 draws conclusions.

Materials and methods

This section describes the scope of the work in terms of the 
considered material in subsection 2.1. Then it addresses the applied 
methodology for topographical measurement and characterisation 
(subsection 2.2) and presents the proposed supervised machine 
learning algorithm for the classification of surface topography based 
on surface topography parameters.

Sample preparation

In the present work, an AISI H13 fabricated via EB-PBF was 
considered. Additive fabricated AISI H13 tool steel is mainly studied 
to produce moulds and dies with conformal cooling for hot forming 
and die casting [66,67]. The significant content of carbides in the 
tempered martensite matrix provides high hardness and wear re
sistance at elevated temperatures, while the low cost makes this 
material widely used in the industrial sector. Although the conven
tional route for producing AISI H13 components is well established, 
AM route offers many advantages, e.g. novel design of conformal 
cooling dies [67,68]. Many works on AISI H13 manufactured by L-PBF 
are present in the literature [69–76]. Although some attempts to 
reduce the crack formation in the component produced by L-PBF by 

heating the start plate have been accomplished [75,76], the crack 
susceptibility of this material hinders the processing via L-PBF of 
crack-free components. Conversely, the higher pre-heating tem
perature easily obtainable in EB-PBF allows producing dense and 
crack-free components once the melting parameters have been op
timised. AISI H13 produced by EB-PBF was initially studied by Cor
mier et al. [77], where a first set of process parameters is reported.

In the present work, 52 cubic specimens of 30 mm of lateral 
dimension have been produced on a 304 stainless steel start plate 
with an ARCAM A2X system. The starting powder was a gas ato
mised AISI H13 powder with EB-PBF particle size distribution 
(35−150) µm. The electron beam followed a snake-like scanning 
pattern with a rotation of 90° after each layer. The melting process 
parameters were varied in a wide range, i.e. the energy density from 
15 J/mm3 to 120 J/mm3, mainly modifying the beam speed from 
300 mm/s to 3200 mm/s [78]. Other modified process parameters 
were the beam current, on two levels (8 mA and 15 mA), the line 
offset from 0.2 mm to 0.3 mm, and the focus offset from 15 to 35 mA 
[46]. The pre-heating temperature was set at 700 °C. Therefore, 
different conditions, both inside and outside the process window, 
are considered to generate a comprehensive set of surface aspects.

Topography characterisation of components by EB-PBF

Surface topography characterisation is standardised by the ISO 
25178 series within the GPS framework. The topography can be 
thought of as the result of the superimposition of several structures 
at different length scales, i.e. different spatial wavelengths. These 
include roughness at low scales, form at large scales, and waviness, 
i.e. a periodic structure typically at large scales. Additionally, some 
individual elements, i.e. topographical features, can be pre
sent [43,62].

Main categories of EB-PBF topographies
In this paper, the discussion is limited to upward-facing surfaces 

because they are the only accessible by Level 1 in-situ measurement. 
Consistently, as-built, i.e. not finished nor post-processed, surfaces 
are considered, as motivated in the introduction, to refer to in-situ 
measurements [9]. Fig. 1 shows some examples of the main types of 
EB-PBF as-built topographies.

Top as-built surfaces of components by EB-PBF with parameters 
inside the process window and in the neighbourhood of the optimal 
point are typically clean. Both roughness and micro-scale waviness 
can be present. The roughness is typically due to the interaction 
between the electron beam and the powder particles [62]. Clean 
surfaces allow appreciating micro-scale periodic texture due to the 
line offset and the scanning strategy of the electron beam with a 
varying degree of smoothness that depends on the process para
meters, that can reach a waviness scale [45]. Sub-optimal process 
parameters may induce a Marangoni flow, generating features re
sembling the melted tracks, which result in significant wavi
ness [62].

Conversely, in the case EB-PBF process parameters are not inside 
the process window, the presence of topographical features dom
inates the resulting topographies. Mostly, two main cases can be 
distinguished. If the energy input is insufficient, which can be due to 
excessively high scanning speed, the melted track is not continuous. 
This results in internal porosities and defects that create several 
dales, or surface pores, leading to the so-called orange peel topo
graphy [13,44,45,62,63]. Alternatively, extreme process conditions 
may promote uneven dynamics of the melt pool, i.e. overheating and 
movement of the liquid, generating a swollen topography, that is, a 
topography dominated by a globule, i.e. a protruding feature.

Indeed, intermediate process conditions, i.e. non-optimised 
parameters inside the process window, can generate wavy topo
graphies with large, isolated features, including dales and globules 
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[44,45]. Last, regardless of process parameters, sputter particles can 
also be present, which are globules from the perspective of topo
graphical characterisation and can be interpreted as isolated fea
tures.

Characterisation methodology of EB-PBF topographies
Because of the complex appearance and presence of multiple 

spatial scales, thorough EB-PBF topographies characterisation re
quires a combination of areal field parameters and feature para
meters [43,60,62,79]. This section briefly describes the 
characterisation methodology applied in this work, according to the 
literature and standard best practices.

Literature and standards require separating the length scales for 
analysis, namely form, waviness, and roughness [43,60,62]. The 
characterisation of AM as-built topographies can focus on waviness 
surfaces. In fact, it includes both the manufacturing signature and, 
possibly, some additional features [62], as discussed in the previous 
section. The first step to isolating the waviness surface is to remove 
the possible macro-geometric error of planarity by applying the F- 
operator. Ultimately, this operation removes from the measured 
topography the least-square-fitted surface modelling the nominal 
form. This operation requires prior removal of measurement dis
turbances, i.e. non-measured points and spikes [80].

Secondly, the residual topography of the F-operator can be stu
died to achieve topographical characterisation. Standard filters have 
to be applied to extract the waviness. The filter type is discussed in 
the following, referring to the spatial wavelength domain. Initially, 
measurement noise is suppressed by applying an S-filter, i.e. a high- 
pass filter. A robust Gaussian filter is a convenient choice among the 
several available filters, for it is inherently robust to measurement 
disturbances [81,82]. The nesting index of the S-filter depends on the 
measurement set-up and is standardised by the ISO 25178-3:2012 
[81]. Once the noise has been removed, the waviness surface can be 
extracted. This can be achieved by applying a high-pass robust 
Gaussian filter [62]. The selection of the most appropriate nesting 
index is crucial. In fact, wrong dimensioning is liable to remove to
pographical features relevant to the manufacturing signature. 
Therefore, differently from the most common standard prescription 
[81], the choice must be made considering the power spectrum 
density of the topography heights [62,83]. In particular, multi-scale 
sensitive analysis can be resorted to [37], and, in this work, fractal 
analysis is exploited [37,60,84]. This type of analysis is exploited in 
literature to study the wavelengths of topographies and relate them 
to the manufacturing process [85]. The multi-scale fractal analysis 
seeks the size of periodical structures to model the measured to
pographies at different scales. Fractals are continuous but nowhere 

differentiable functions with self-similarity, or affinity, properties. 
Technological surfaces show self-affinity because they seem smooth 
at large observation scales and rougher at lower observation scales. 
In particular, roughness can be interpreted as a geometrical irregu
larity that can be modelled by fractals [37]. Changing the observation 
scale, i.e. the fractal dimension, different degrees of approximation 
can be obtained. The scale at which the roughness can be appre
ciated is the smooth-to-rough-crossover (SRC) [37,84], which can be 
consistently chosen as the nesting index to extract the waviness 
surface.

Finally, the resulting extracted waviness surface and roughness 
surface, i.e. the SL-Surface, can be characterised. The waviness sur
face characterisation requires evaluating topographical areal field 
parameters, e.g. the arithmetical mean height of the surface Sa, the 
root mean square height surface Sq, the root mean square gradient of 
the surface Sdq, and feature parameters [60]. The SL-Surface re
quires, to begin with, feature identification. This can be obtained by 
watershed segmentation [60]. This is a technique conceived for 
geography and successfully applied in technological surfaces char
acterisation [37,86], which separates a topography into smaller re
gions. The method supposes that the topography is flooded with rain 
and that, in such a condition, water flows downwards steepest paths 
to domains of attractions [37,62]. The watersheds are lines that 
segment the topography in regions that represent subsequent water 
catchment basins. Literature has recently improved the method by 
applying it to surface height gradient maps, obtained by a Sobel 
operator, rather than on the height map itself. This increases the 
accuracy and robustness of the watershed segmentation by enhan
cing the edges of topographical features [43,62,87,88]. Additionally, 
watershed segmentation is known to suffer from over-segmentation. 
Therefore, pruning is necessary [37,60]. Effective pruning for EB-PBF 
topographies can be obtained by applying a threshold of three times 
the standard deviation above and below the average height to 
identify respectively hills and dales [88]. Once the topographical 
features have been identified, feature characterisation is carried out. 
This includes evaluating for both globules, i.e. hill, and surface pores, 
i.e. dale, the overall volume (Vg and Vp) and the area percentage to 
the whole surface (A g% and A p% ) [62].

Namely, the identified features can be removed to allow the 
characterisation of the actual roughness surface through areal field 
parameters, e.g. Sa, Sq, Sdq, Ssk, Sku [62]. However, in the case of an 
orange-peel topography, i.e. completely dominated by surface pores, 
it is apparent that not enough data would remain to perform such 
characterisation. Therefore, in this work, roughness surface is not 
considered. Table 2 summarises the topographical parameters that 

Fig. 1. Main categories of EB-PBF as-built topographies. As-built top surfaces of H13 by EB-PBF. Images were taken with a LEICA stereomicroscope, 8 ╳ magnification. Scale 
bar: 2 mm.
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are exploited to characterise EB-PBF as-built topographies in 
this work.

Measurement set-up of EB-PBF topographies
The specimens’ top surface was measured by a state-of-the-art 

surface topography measuring instrument based on coherence 
scanning interferometry (CSI) [89,90], namely a Zygo NewView 
9000. Measurements were set up to trade-off between metrological 
performances and time. Accordingly, measurements were performed 
exploiting a 5.5× Michelson objective lens with a numerical aperture 
of 0.15, a digital zoom 0.5×, resulting in a pixel size of 3.15 µm. 
Stitching of 4 × 4 fields of view, each of (1000 × 1000) pxl, was ap
plied to obtain an investigated area of (13 × 8) mm; the longer size 
was set orthogonal to the scanning tracks. The investigated area is 
thus chosen significantly larger than what literature considers to be 
sufficient to obtain representative characterisations, i.e. ∼(5 × 5) mm 
[43,62,87,88]. Measurements were obtained as the average of 4 re
plications to reduce noise, with the application of signal over
sampling to improve the signal-to-noise ratio in regions challenging 
to be measured [91]. Measurements were performed in the top re
gion of the specimens at a distance of 3 mm from each edge. In so 
doing edges are excluded from the measurement, consistently with 
their liability of introducing singularities in the topography. Con
sidering the investigated large area and the uniformity of the to
pographies, as it can be appreciated in Fig. 1, a single location is 
deemed representative. Samples manufactured in the most extreme 
conditions, which resulted in the most irregular topographies, were 
additionally measured at the centre of the top surface. These further 
data are introduced in the dataset to increase the training set nu
merosity and representativeness, resulting in 77 data.

Current state-of-the-art surface topography measuring instru
ments are only at a research and prototype stage for in-situ mea
surements. The performed measurements are ex-situ. This work 
aims to develop a methodology and model easily applicable to the 
in-situ surface topography measurements currently being developed 
[47–49]. Whilst CSI technology is not the best choice for in-chamber 
installation and other surface topography measurement techniques 
are, e.g. fringe projection [47,48], focus variation [49], CSI is the most 
accurate topographical measurement method [92,93], thus is con
sidered in this work to present and demonstrate the proposed 
classification method.

Measured surface topographies are characterised according to 
the methodology formerly discussed; the S-filter nesting index was 
set to 10 µm [81]. The characterisation has been performed using the 
commercial state-of-the-art software MountainsLab v8.0. Moreover, 
mid- to high-magnification imaging by SEM of the measured regions 
was performed to obtain further qualitative information on the 
measured topographies’ morphology and the defect types.

Supervised machine learning for topography classification

This section describes the chosen classifier architecture and al
gorithm and the methodology to train it and optimise its hy
perparameters.

Classification problems intend to define classifying criterion C 
that can associate a class label y ε C C{ , , }n1 … , where n is the number of 
classes, to a set of inputs x, such that xy ( , )C= , where is the set 
of hyperparameters of the model [94]. In the present work, n = 10, 
according to Section 2.1, and x ∈ℝ1,8, according to Table 2. The 
classification is a supervised machine learning problem because the 
classifying criterion is defined based on a training set L of N-tuples 
of x y( , ), which has been formerly labelled by a supervisor, and aims 
to predict the class of a new set of input, i.e. to achieve a general
isation [94]. The problem has been well defined and studied in the 
literature since the introduction of logistic regression. It consists in 
finding the functional form of C and the related that minimise a 
loss function, xf f y( , ( , ))C= , based on a training set of input data, 
and optimise the prediction accuracy, i.e. the ratio of correct pre
diction to the size of the set or the complement to one of the mis
classification rate [94]:

Acc
N

x y( , ) 1
1

( ( ) )
i

N

i i
1

C L C=
= (1) 

where x( ) is the indicator function, so that x( ) 1= if x is true, 
otherwise is x( ) 0= . As the interest lies in the generalisation cap
abilities of the model, typically, the accuracy is also evaluated on a 
test set, i.e. a sample independent from the training set. The latter 
can be obtained by bootstrap or constrained bootstrap sampling the 
training set. In this work, cross-validation is considered, which 
consists in splitting in k folds the data set. Each fold, in turn, is used 
as a test set. In so doing, each point is predicted once and used to 
build the classifier k-1 times. The accuracy is computed as the 
average accuracy of all the folds [94]. In this work, 5 randomly 
generated folds are considered, in line with common best practices 
[94]. Thus, the dataset of 77 measurements was randomly split into 
5 groups, 3 of 15 data and 2 of 16, and training and cross-validation 
are performed accordingly.

Literature offers several choices of supervised machine learning 
classifiers, ranging from parametric approaches, e.g. logistic regres
sion [94], to non-parametric models, e.g. classification and regres
sion trees (CART) [95], ensembles of trees [96,97], support vector 
machines (SVM) [98].

CART classifiers describe a decision rule that a tree can graphi
cally represent; each branch node is a decision rule that leads to a 
leaf which is the class. Trees’ main parameters are the depth, i.e. the 
number of nodes on the same branch, and the width, i.e. the number 
of branches. A particular way to construct decision trees is boosting. 
This algorithm applies the weak learner to a weighted version of the 
data many times to optimise a certain loss function. Greater weights 
are associated with misclassified points to improve the accuracy 
[99]. In general, trees suffer from excessive growth, making them 
hard to interpret and liable to overfit the data [94]. Several alter
natives to relieve this issue are available. Amongst them, creating an 
ensemble of weak learners is particularly effective [96,97]. By ag
gregating several simpler weak learners, ensembles result in greater 
simplicity, robustness, and accuracy. The decision rule across the 
weak learners is typically by a simple majority. Consequently, in 
addition to the parameters typical of the weak learner, the base 
learner numerosity and the method to create their several instances 
define the ensemble. Bootstrap aggregating, i.e. bagging, allows 
creating an ensemble of trees by taking bootstrap samples BL of m 
data from L , drawn randomly with replacement, and exploiting 
each of them to create a weak classifier BC [96]. If the input data and 
the data dimension are subsampled with the same methodology, a 

Table 2 
Topographical parameters exploited to characterise as-built EB-PBF topographies. 

Parameter Evaluation surface Parameter type

SRC S-Surface
Sa Waviness surface Field
Sq
Sdq
Vg SL-Surface Feature

A g%

Vp

A p%
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random forest can be obtained. This solution has the advantage of 
constructing uncorrelated predictors for the different samples 

BL [94,97].
A support vector machine is a machine learning classification 

algorithm that maps the input data in hyperspace and defines a 
hyperplane that can identify two groups of data, i.e. it allows binary 
classification [98]. SVM allows, by space transformation, the solution 
for nonlinear classifiers, i.e. the identification of hypersurfaces 
nonlinear in the original hyperspace that in the transformed space 
are hyperplanes [94]. Strategies are available to solve also multi- 
classification problems. The main parameters of an SVM are the 
parameters describing the hyperplanes and the tolerance ϵ. This 
defines a tolerance around the hyperplane for the classification. The 
support vectors are the observed points that lie on the boundary of 
the separating hyperplane, whose parameters are obtained by sol
ving a quadratic dual problem [94,100].

Non-parametric approaches, e.g. CART and SVM, are more flex
ible and yield more robust and accurate classifiers, although se
lecting the best set of hyperparameters is more complex [94]. In fact, 
due to the several parameters and their highly nonlinear effect on 
accuracy, optimisation in closed-form solutions is often expensive. A 
convenient alternative methodology exploits black-box models be
tween the hyperparameters and the accuracy, Acc Acc ( )= , and 
maximises the classifier accuracy by Bayesian optimisation algo
rithm [101] by finding Accargmax ( ( ))best = . The approach is 

computationally less demanding and is demonstrated to achieve a 
global optimisation [102]. The Bayesian optimisation assumes that 
the unknown cost function describing the model accuracy, Acc ( ), is 
a real Gaussian Process (GP) realisation, which provides suitable 
flexibility and regularity to the function. A prior distribution of the 
GP is hypothesised and iteratively updated, through the posterior 
distribution, obtained as new observation of the function are made. 
Consequently, the choice of the new evaluation point, next , of the 
cost function is crucial in the algorithm, for it determines the pos
terior. The selection of next is made by studying a certain acquisition 
function, xa a y( *; , {( , )})= , such that aargmax ( )next

*
= [101,103]. 

The literature proposes several alternative acquisition functions. One 
of the criticalities is defining a suitable trade-off between the ex
ploitation and the exploration of the hyperparameter space. In par
ticular, the acquisition function has to guarantee that regions that 
minimise the cost function are thoroughly investigated, i.e. 
exploited, and that those with higher uncertainty, i.e. little explored, 
are appropriately investigated. Amongst the others, the constrained 
overexploitation expected improvement per second is a suitable choice 
that allows achieving a global optimisation considering the 

computational effort [101,103]. In particular, the method assumes 
the acquisition function as:

xa y
Acc

;( * , {( , )})
[max(0, ( *) ( ))]

( *)EIpS
Q

s
=

(2) 

where ( *)Q is the minimum posterior mean and ( *)S the pos
terior mean of the GP model describing the evaluation time. Under 
the assumption that the accuracy distributes as a GP model with a 
predictive mean x y( *; , {( , )}) and predictive standard deviation 

x y( *; , {( , )}), Eq. (2) becomes:

x

x

a y

y

;

;

( * , {( , )})

( * , {( , )})( ( *) ( ( *)) ( ( *); 0, 1))
EIpS

s

N= +
(3.1) 

x
x

Acc y
y;

( *)
( ) ( *; , {( , )})

( * , {( , )})
best=

(3.2) 

where ( ( *)) is the standard normal density function [101,102]. 
Additionally, the posterior standard deviation must not be smaller 
than a certain fraction of the prior standard deviation. This con
straint avoids overexploitation, i.e. finding local minima. In fact, if it 
is not satisfied, the new hyperparameters set next belongs to a re
gion with a small uncertainty, i.e. it is between already tested points. 
If that is the case, a multiplication factor proportional with a factor 
multiple of 10 to the number of performed iterations of the Bayesian 
algorithm is applied to the next to correct the next evaluation point 
[102]. Bayesian optimisation with 45 iterations is applied; the 
number of iterations is slightly greater than the empirical suggestion 
of 30 [94].

In this work, the classifier shown in Fig. 2 is proposed, where 
topographical classes are taken from the literature, as discussed in 
Section 2.2. The classifier operates in two steps to additionally 
identify the adequacy of the adopted process parameters. Fig. 3
shows scatter plot of process parameters clustered on the basis of 
the classification proposed in Fig. 2. Here, main processing para
meters typically reported in literature are considered for sake of 
discussion, i.e. the electron beam power P, the line energy LE, i.e. the 
ratio between P and the scanning speed v, and the area energy AE, 
i.e. the ratio between LE and the line offset. Those parameters are 
mainly controlling the topography and the generation of other de
fects [46]. Accordingly, considering surface topography quality as per 
Section 2.2, processing parameters in-process and out-of-process 
window can be identified. The latter are related to swollen topo
graphy, i.e. with isolated features and severe waviness leading to 
orange peel. The former could be further split, basing on additional 
material properties, e.g. mechanical response, internal defect 

Fig. 2. Surface topography classifier workflow. 
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content to highlight optimised process condition, i.e. related to low 
power and low speed (see Fig. 3). This is consistent with literature 
reviewed in Section 2.2, for it allows optimising the surface avoiding 
excessive waviness, introduced by higher speed, and swelling, due to 
excessive energy. Therefore, the proposed classifier consists of a 
convolution of three classifiers 1C , 2C and 3C , each of which has to be 
trained according to the methodology formerly discussed. 1C per
forms a binary classification to highlight the process parameter 
adequacy and is selected as an SVM algorithm. This choice is pre
ferred to other typical binary solutions, e.g. logistic regression, be
cause it has to be applied in a large hyperspace and features more 
flexible kernel functions to model non-linearity between the fea
tures [94]. Because at the considered level only surface topography 
information are available, and in general if a new material is in
vestigated, relationship between other properties may be unavail
able, the further distinction between in-process window and 
optimised process in not considered. The Bayesian optimisation will 
target the kernel function (considering among the alternatives 
linear, quadratic, and gaussian kernels) and the tolerance ϵ. Se
quentially, basing on the output of 1C , the other classifier, i.e. either 

2C or 3C , is applied to achieve the actual topographical classification. 
The other two classifiers are chosen as tree classifiers to better fit the 
larger number of available classes. Bayesian optimisation is applied 
to investigate the width and depth and select the best refining 
method to train the weak learner, i.e. boosting, or the effectiveness 
of ensemble aggregation method, i.e. bagging.

The quantitative topographical characterisation results, obtained 
according to the methodology presented in Section 2.2, are exploited 
to train the supervised machine learning classifier. Training and 
classification are performed in Matlab 2019b.

Results and discussion

Topographical and morphological characterisation

Table A1 summarises the results of the topographical character
isation, highlighting the class type as per Section 2.2. Fig. 1 shows 
low magnification images of the samples’ top surface obtained with 
a stereomicroscope with an 8× magnification. As intended, the 
considered range of process parameters allowed generating the 
main classes of topographies that can be obtained, according to lit
erature, under different process conditions. Insights are shown in 
Fig. 4 and Fig. 5, which report the SEM image and the pseudo-colour 
map resulting from the CSI topographical measurement.

Supervised machine learning classification

The dataset of Table A1 is exploited to train the classifier ac
cording to the methodology of Section 2.3. The Bayesian optimisa
tion with 45 iterations selected as the first classifier 1C a SVM with a 
quadratic kernel and a tolerance ∈ of 0.26. Fig. 6(a) shows the related 
Bayesian optimisation graph that plots the evolution of the mis
classification error forecast with the (updated) prior and the actual 
observed value at each iteration (exploited to evaluate the posterior). 
The graph highlights that the number of iterations was sufficient to 
select the best set of hyperparameters. Additionally, the graph shows 
the iteration in which the set of hyperparameters yielding the 
minimum classification error is achieved and the one in which the 
minimum upper bound of the misclassification error, useful in
formation for the acquisition function. The cross-validation results in 
an average accuracy of the selected classifier 1C for the considered 
case study of 100% as shown by the confusion matrix reported in 
Fig. 6(b).

The two groups of data are then exploited to train the classifiers 
2C and 3C . In both cases, the Bayesian optimisation selected a bagged 

classifier, with main hyperparameters summarised respectively in 
Fig. 7(a) and Fig. 8(a). The cross-validation results in an average 
trained classifiers’ accuracy of 84.4% and 90.6% due to the confusion 
matrix shown in Fig. 7(b) and Fig. 8(b), respectively, resulting in an 
overall accuracy of the classifier C of 87%.

Discussion

According to the literature, the process conditions generated an 
exhaustive set of possible topographies [13,44,45,62,63]. Clean and 
wavy topographies, generated with process parameters inside the 
process window, feature a distinctive regular texture due to the 
process signature, i.e. the scanning tracks; see Fig. 4(a) and Fig. 4(c), 
respectively. Conversely, process set-up significantly far from the 
best conditions in the process window induces either orange peel 
topography or the presence of significant features. The SEM analysis 
shows that the generated surface pores are filled with unmelted 
powder particles with a fine powder particle size (significantly 
smaller than 100 µm), which tend to agglomerate at the ridge of 
large isolated swollen area, identified as globules.

The topographies were quantitatively characterised through a 
complex set of field and feature topographical parameters 
[43,62,79]. Amongst these, contrary to the common practice of only 
reporting Sa and Sz, Sq and Sdq appear to be highly indicative of the 
change in surface topography. With process parameters out of the 

Fig. 3. Power (P), Line Energy (LE) and Area Energy (AE) as a function of the scanning speed (v). Data points are classified on the basis of the topographical classes and clustered on 
the basis of process parameters window (PW), i.e. out of process window (red ellipsis) and in-process window (green). According to the literature, an optimised process condition 
(blue ellipsis) can also be identified, considering further properties, e.g. porosity [46].
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process window, orange peel topographies are generated. These are 
entirely dominated by surface pores and quantified well by the A p% .

The generated dataset, reported in Table A1, is exploited to train 
the proposed classifier, whose structure is shown in Fig. 2, and 
whose hyperparameters are selected by Bayesian optimisation. The 
obtained result achieves a satisfactory overall accuracy of 87%. In the 
first step, binary classification is obtained by a quadratic SVM, with 
accurate and precise performances. The second step of classification 
in topographical classes is more complex due to the higher number 
of alternatives. Bagged ensembles of CART classifiers solve the 
classification problem with satisfactory results. The confusion ma
trixes show that misclassifications are committed in neighbouring 
classes and consequently are not severe. For example, 17% of clean 
topographies with features are confused with clean topographies, i.e. 
suggesting that the present features have a marginal contribution to 
the parameters. Similarly, 8% of fine orange peel topographies are 
confused with the orange peel type. Accuracy of prediction is sa
tisfactory also considering the repeatability of the process when 
parameters are inside the process window [43,104]. Misclassifica
tions arise when parameters are either out of the process window 
(see Fig. 8) or approaching it, e.g. more complex topographies re
sulting from nominally in-process window parameters (see Fig. 7). 
This is consistent with the increasing amount of complex interac
tions elicited by such conditions. However, as far as quality inspec
tions are concerned, such errors are marginal, since no defective 
surface is identified as coming from an in process window (see 
Fig. 6). Additionally, those misclassifications could be easily relieved 
when considering information-rich process control exploiting multi- 
sensor data-fusion [9].

Indeed, the proposed classifier in Fig. 2 is not the unique solution 
to the problem at hand. An alternative approach consisting of a 
unique algorithm, xy *( , ),C= was considered. However, although 
several supervised machine learning algorithms were tested and 
optimised, e.g. multinomial logistic regression, naïve bayes classifier, 
CART and ensembles, none could even achieve an accuracy of 65%. 
Explanations can be manifold and lay both in the high dimension
ality of the studied problem and in the adequacy of the classification 
algorithm. Conversely, deconstructing the problem into three sub
problems aids in identifying and training the most suitable su
pervised machine learning algorithms.

The high dimensionality of the considered problem was also 
addressed. While outlining the methodology to characterise PBF as- 
built topographies [42,58], the literature acknowledges the com
plexity and large numerosity of the necessary set of parameters, 
reported in Table 2. Thus, the feature selection problem was ad
dressed to reduce the dimensionality of the classification [105]. 
None of the applied statistical approaches disproved the hypothesis 
of statistical significance of the parameters allowing the reduction of 
the dimensionality.

Conclusions

This paper developed a machine learning classifier of as-built 
surface topographies by additive manufacturing based on quantita
tive surface characterisation. This is unprecedented in literature, 
which mostly relies on qualitative classifications. Surface topo
graphy characterisation is essential for components due to the cor
relation with technological properties and functionality. Accordingly, 
several studies correlated process parameters, topography and parts’ 

Fig. 4. Example of in-process parameter window as-built surface topography of H13 by EB-PBF. Clean surface measured by (a) SEM at 55x magnification and (b) by CSI. Wavy 
topography measured by (c) SEM at 55x magnification and (d) by CSI. Scanning tracks can be appreciated on both topographies. Notice that the vertical scale range is the same to 
stress the comparison.
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properties for PBF processes. These supported the development of 
in-situ measurement techniques to enable automated and integrated 
process quality control, some of which measure surface topo
graphies. This work developed a methodology to build a supervised 
machine learning algorithm to classify the visual aspect of as-built 
surface topographies based on topographical parameters. The 
methodology was successfully applied to an industrially relevant 

case study. The relevance of the algorithm is manifold on the route 
towards an integrated multi-sensor automated control system for 
AM. First, it draws a connection between the large set of topo
graphical parameters, which are needed to characterise the surface 
quantitatively and on the basis of which GD&T are specified, and the 
visual aspect of the surface, which is of more immediate under
standing. Therefore, it can aid component designers in the early 

Fig. 5. Example of surface topography of H13 by EB-PBF in non-optimised process condition. Orange peel surface measured by (a) SEM at 55x magnification and (b) by CSI. Notice 
the unmelted powder particles entrapped in the surface pores. Wavy topography with features measured by (c) SEM at 55x magnification and (d) by CSI. Both small surface pores 
with entrapped unmelted powder particles with fine particle size and a relevant globule with satellite sputter and powder particles. (c, d) Appreciate also the presence of a crack 
at the centre of lower longer side.

Fig. 6. (a) Plot of minimum classification error evolution during the Bayesian optimisation of the classifier 1C . (b) Confusion matrix of the optimised classifier. 
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phase of design. The second, it will enable, when integrated with 
current in-situ measurements, mostly based on qualitative inspec
tion, multi-scale, information-rich quality control. Thus, it will 
augment in-situ measurements informativeness and couple them to 
quantitative characterisation. The third, it allows for predicting the 
visual appearance of components based on process parameters, 
provided a correlation is available. This will aid process designers in 
setting up and optimising processes more efficiently for new ma
terials and facilitate real-time process parameters control. Future 
works will tackle the limitations of the proposed methodology by 
investigating the generalisation of the classifier to include several 
materials, exploit multi-sensor data, and rely upon unsupervised 
machine learning to improve performances further. Additionally, 
future work may exploit the presented methodology to identify 
other non-standard surface topography parameters, which may 
improve classification performances.
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Annex

see Appendix Table A1.

Fig. 7. (a) Plot of minimum classification error evolution during the Bayesian optimisation of the classifier 2C . (b) Confusion matrix of the optimised classifier. 

Fig. 8. (a) Plot of minimum classification error evolution during the Bayesian optimisation of the classifier 3C . (b) Confusion matrix of the optimised classifier. 
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Table A 1 
Results of topographical characterisation of the 52 considered samples. Data from 53rd to the 77th refer to samples 1–25, measured at the centre of the sample. 

Sample # SRC / µm Sa / µm Sq / µm Sdq Vg / mm3 A g% / % Vp / mm3 A p% / % Type

1 4638.00 103 127.4 0.109 8.346 37.39 1.300 29.76 wavy + features
2 1120.00 54.74 67.9 0.222 0.000 0.00 4.673 100.00 orange peel
3 617.00 49.33 62.4 0.296 1.476 20.61 2.235 79.39 orange peel
4 402.30 61.24 77.38 0.373 0.204 2.14 3.210 97.86 orange peel
5 906.30 48.96 62.57 0.228 0.743 6.25 3.336 93.75 orange peel
6 926.60 44.07 54.99 0.074 0.279 4.80 0.184 20.44 clean + features
7 1607.00 66.39 81.08 0.211 0.000 0.00 6.914 100.00 orange peel
8 1020.00 58.3 72.48 0.244 1.956 16.81 3.592 83.19 orange peel
9 2006.00 54.97 70.33 0.113 4.160 28.08 4.384 71.92 isolated features

10 3151.00 31.24 37.43 0.034 3.206 21.98 0.368 26.79 clean + features
11 1957.00 63.73 77.23 0.146 0.000 0.00 6.393 100.00 isolated features
12 1265.00 93.79 110.8 0.288 0.000 0.00 3.851 100.00 orange peel
13 2113.00 76.31 93.9 0.209 0.000 0.00 8.182 100.00 orange peel
14 1301.00 64.24 79.86 0.236 0.686 3.99 5.761 96.01 orange peel
15 1829.00 74.12 89.66 0.082 1.736 8.68 0.362 18.56 clean + features
16 4656.00 100.8 119.7 0.095 9.365 47.22 1.119 30.09 wavy + features
17 1064.00 56.34 70.74 0.220 1.527 10.86 3.724 89.14 orange peel
18 3336.00 140.7 177.7 0.146 5.080 37.82 1.187 29.52 wavy + features
19 677.30 50.42 64.74 0.257 1.638 19.78 2.359 80.21 orange peel
20 759.70 49.71 63.7 0.256 0.955 7.75 3.373 92.25 orange peel
21 430.20 54.74 67.33 0.068 0.000 0.00 0.000 0.00 clean
22 1414.00 61.21 76.5 0.136 0.000 0.00 1.226 57.97 isolated features
23 1319.00 59.61 75.35 0.212 0.000 0.00 6.437 100.00 orange peel
24 763.70 52.71 64.58 0.276 0.650 6.87 3.552 93.13 orange peel
25 2738.00 113.2 131.1 0.104 2.045 19.58 0.614 29.20 wavy + features
26 719.00 16.23 21.12 0.053 0.291 10.40 0.000 0.00 clean + particles
27 228.00 8.99 11.39 0.043 0.000 0.00 0.000 0.00 clean smooth
28 221.30 17.75 24.7 0.075 0.007 0.56 0.000 0.00 clean smooth
29 1016.00 10.72 14.35 0.029 0.185 2.61 0.000 0.00 clean + particles
30 781.30 16.16 21.28 0.037 0.107 4.29 0.000 0.00 clean + particles
31 770.70 22.76 27.71 0.046 0.095 0.87 0.000 0.00 clean + particles
32 490.90 10.09 12.86 0.035 0.000 0.00 0.000 0.00 clean smooth
33 1051.00 22.13 27.66 0.051 0.408 2.93 0.000 0.00 clean + particles
34 1006.00 21.62 28.1 0.065 0.875 4.27 0.042 0.58 clean + particles
35 4772.00 145.1 176.1 0.127 0.550 7.43 3.383 21.54 wavy + features
36 4851.00 202.3 242.7 0.145 0.232 3.87 2.630 25.83 wavy + features
37 636.90 152.3 182.6 0.156 0.207 1.04 0.000 0.00 wavy + features
38 1470.00 147 179.6 0.163 0.788 9.77 0.294 10.72 wavy + features
39 789.90 173.4 235.1 0.231 0.862 6.89 0.136 7.60 wavy + features
40 3736.00 96.33 125.1 0.106 0.492 4.58 1.374 15.95 wavy + features
41 3205.00 101.8 125.5 0.106 0.129 0.57 1.283 13.14 wavy + features
42 2018.00 122.4 156.6 0.126 0.339 6.88 0.537 10.17 wavy + features
43 1095.00 152.3 192.1 0.171 0.939 6.53 0.221 6.56 wavy + features
44 3284.00 187.3 218.8 0.196 0.318 5.98 8.964 52.91 wavy + features
45 3361.00 57.01 69.41 0.061 0.255 9.14 2.054 31.28 wavy
46 4564.00 78.51 92.12 0.064 0.520 4.99 4.917 32.39 wavy + features
47 3118.00 159.1 185.2 0.189 0.126 4.07 5.780 36.96 wavy + features
48 3231.00 63.59 77.02 0.058 0.095 6.37 0.498 20.48 wavy
49 7846.00 56.2 65.69 0.029 2.870 25.76 2.185 16.00 wavy + features
50 3606.00 186.2 217 0.145 1.150 11.51 3.979 33.36 wavy + features
51 1263.00 224.4 275.8 0.305 0.396 8.95 1.951 21.64 wavy + features
52 4564.00 78.51 92.12 0.064 0.544 5.76 4.792 29.64 wavy
53 3950.00 82.27 95.58 0.085 10.150 51.71 0.053 3.14 wavy + features
54 1112.00 61.49 77.42 0.256 0.000 0.00 4.639 100.00 orange peel
55 595.00 53.44 69.99 0.319 1.652 35.73 7.280 79.39 orange peel
56 402.30 61.24 77.38 0.373 0.204 2.14 3.210 97.86 orange peel
57 882.40 49.17 61.2 0.212 1.297 1.06 2.448 48.42 orange peel
58 1003.00 52.58 65.86 0.089 0.000 0.00 2.084 7.28 clean + features
59 1323.00 78.24 93.8 0.263 3.462 4.08 4.426 95.92 orange peel
60 871.90 62.02 77.43 0.278 1.644 16.40 2.876 83.60 orange peel
61 1500.00 52.48 63.61 0.137 2.135 15.82 3.528 52.13 isolated features
62 3150.80 31.1 37.28 0.030 3.206 21.98 0.368 26.79 clean + features
63 1654.00 72.1 86.41 0.167 0.000 0.00 4.095 100.00 isolated features
64 1265.00 93.79 110.8 0.288 0.000 0.00 3.851 100.00 orange peel
65 1564.00 84.77 103.6 0.233 0.301 1.61 4.526 98.39 orange peel
66 1183.00 66.43 81.33 0.251 0.000 0.00 4.482 100.00 orange peel
67 3205.00 33.07 43.06 0.039 2.592 12.80 0.000 0.00 clean + features
68 3324.00 103.7 120.9 0.099 5.163 55.75 0.000 0.00 wavy + features
69 1131.00 54.95 70.25 0.203 1.787 15.83 3.165 84.17 orange peel
70 5588.00 95.38 130.4 0.104 12.130 84.86 0.152 7.06 wavy + features
71 630.00 57.5 74.09 0.303 1.413 21.47 2.081 67.39 orange peel
72 681.40 57.75 75.64 0.284 0.299 4.30 2.751 95.70 orange peel
73 503.50 57.2 70.35 0.066 0.000 0.00 0.000 0.00 clean
74 792.30 82.37 102.7 0.136 0.000 0.00 0.696 17.97 isolated features
75 1382.00 55.62 67.4 0.200 0.000 0.00 4.690 100.00 orange peel

(continued on next page) 
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